lunes, 28 de mayo de 2012

Introducción



El primer intento de utilizar la luz como soporte para una transmisión fue realizado por Alexander Graham Bell, en el año 1880. Utilizó un haz de luz para llevar información, pero se evidenció que la transmisión de las ondas de luz por la atmósfera de la tierra no es práctica debido a que el vapor de agua, oxigeno y partículas en el aire absorben y atenúan las señales en las frecuencias de luz.
Se ha buscado entonces la forma de transmitir usando una línea de transmisión de alta confiabilidad que no reciba perturbaciones desde el exterior, una guía de fibra llamada Fibra óptica la cual transmite información lumínica.
La fibra óptica puede decirse que fue obtenida en 1951, con una atenuación de 1000 dB/Km. (al incrementar la distancia 3 metros la potencia de luz disminuía ½), estas perdidas restringía, las transmisiones ópticas a distancias cortas. En 1970, la compañía de CORNING GLASS de Estados Unidos fabricó un prototipo de fibra óptica de baja perdida, con 20 dB/Km. Luego se consiguieron fibras de 7 dB/Km. (1972), 2.5 dB/Km. (1973), 0.47 dB/Km. (1976), 0.2 dB/Km. (1979). Por tanto a finales de los años 70 y a principios de los 80, el avance tecnológico en la fabricación de cables ópticos y el desarrollo de fuentes de luz y detectores, abrieron la puerta al desarrollo de sistemas de comunicación de fibra óptica de alta calidad, alta capacidad y eficiencia. Este desarrollo se vio apoyado por diodos emisores de luz LEDs, Fotodiodos y LASER (amplificación de luz por emisión estimulada de radiación).
La Fibra Óptica es una varilla delgada y flexible de vidrio u otro material transparente con un índice de refracción alto, constituida de material dieléctrico (material que no tiene conductividad como vidrio o plástico), es capaz de concentrar, guiar y transmitir la luz con muy pocas pérdidas incluso cuando esté curvada. Está formada por dos cilindros concéntricos, el interior llamado núcleo (se construye de elevadísima pureza con el propósito de obtener una mínima atenuación) y el exterior llamado revestimiento que cubre el contorno (se construye con requisitos menos rigurosos), ambos tienen diferente índice de refracción ( n2 del revestimiento es de 0.2 a 0.3 % inferior al del núcleo n1 ).
El diámetro exterior del revestimiento es de 0.1 mm . aproximadamente y el diámetro del núcleo que transmite la luz es próximo a 10 ó 50 micrómetros. Adicionalmente incluye una cubierta externa adecuada para cada uso llamado recubrimiento.

Ventajas de la tecnología de la fibra óptica

Baja Atenuación


Las fibras ópticas son el medio físico con menor atenuación. Por lo tanto se pueden establecer enlaces directos sin repetidores, de 100 a 200 Km . con el consiguiente aumento de la fiabilidad y economía en los equipamientos.

Gran ancho de banda


La capacidad de transmisión es muy elevada, además pueden propagarse simultáneamente ondas ópticas de varias longitudes de onda que se traduce en un mayor rendimiento de los sistemas. De hecho 2 fibras ópticas serían capaces de transportar, todas las conversaciones telefónicas de un país, con equipos de transmisión capaces de manejar tal cantidad de información (entre 100 MHz/Km a 10 GHz/Km).

Peso y tamaño reducidos


El diámetro de una fibra óptica es similar al de un cabello humano. Un cable de 64 fibras ópticas, tiene un diámetro total de 15 a 20 mm . y un peso medio de 250 Kg/km. Si comparamos estos valores con los de un cable de 900 pares calibre 0.4 (peso 4,000 Kg/Km y diámetro 40 a 50 mm ) se observan ventajas de facilidad y costo de instalación, siendo ventajoso su uso en sistemas de ductos congestionados, cuartos de computadoras o el interior de aviones.

Gran flexibilidad y recursos disponibles


Los cables de fibra óptica se pueden construir totalmente con materiales dieléctricos, la materia prima utilizada en la fabricación es el dióxido de silicio (Si0 2 ) que es uno de los recursos más abundantes en la superficie terrestre.

Aislamiento eléctrico entre terminales


Al no existir componentes metálicos (conductores de electricidad) no se producen inducciones de corriente en el cable, por tanto pueden ser instalados en lugares donde existen peligros de cortes eléctricos.

Ausencia de radiación emitida


Las fibras ópticas transmiten luz y no emiten radiaciones electromagnéticas que puedan interferir con equipos electrónicos, tampoco se ve afectada por radiaciones emitidas por otros medios, por lo tanto constituyen el medio más seguro para transmitir información de muy alta calidad sin degradación.

Costo y mantenimiento



El costo de los cables de fibra óptica y la tecnología asociada con su instalación ha caído drásticamente en los últimos años. Hoy en día, el costo de construcción de una planta de fibra óptica es comparable con una planta de cobre. Además, los costos de mantenimiento de una planta de fibra óptica son muy inferiores a los de una planta de cobre. Sin embargo si el requerimiento de capacidad de información es bajo la fibra óptica puede ser de mayor costo.
Las señales se pueden transmitir a través de zonas eléctricamente ruidosas con muy bajo índice de error y sin interferencias eléctricas.
Las características de transmisión son prácticamente inalterables debido a los cambios de temperatura, siendo innecesarios y/o simplificadas la ecualización y compensación de las variaciones en tales propiedades. Se mantiene estable entre -40 y 200 ºC .
Por tanto dependiendo de los requerimientos de comunicación la fibra óptica puede constituir el mejor sistema.

Desventajas de la fibra óptica



El costo de la fibra sólo se justifica cuando su gran capacidad de ancho de banda y baja atenuación son requeridos. Para bajo ancho de banda puede ser una solución mucho más costosa que el conductor de cobre.

La fibra óptica no transmite energía eléctrica, esto limita su aplicación donde el terminal de recepción debe ser energizado desde una línea eléctrica. La energía debe proveerse por conductores separados.

Las moléculas de hidrógeno pueden difundirse en las fibras de silicio y producir cambios en la atenuación. El agua corroe la superficie del vidrio y resulta ser el mecanismo más importante para el envejecimiento de la fibra óptica.

Incipiente normativa internacional sobre algunos aspectos referentes a los parámetros de los componentes, calidad de la transmisión y pruebas.







Aplicación como elemento de circuito. Parámetros distribuidos

La líneas de microcintas son ampliamente usadas para interconectar circuitos lógicos de alta velocidad en las computadoras digitales porque estas pueden ser fabricadas por técnicas automatizadas y ello proporciona una señal uniforme en toda la trayectoria.




žLINEAS DE CINTAS PARALELAS(Striplin)


IMPEDANCIA CARACTERÍSTICA:

La fórmula da mayor precisión cuando puede despreciarse el espesor t de la cinta de señal.
es la integral elíptica completa de primera especie





W: Ancho de la cinta.
t: Espesor de la cinta.
e: dieléctrico de permitividad.
b: separación entre las cintas de tierra,





Son estructuras que consisten de un solo conductor. Hay dos tipos usados comúnmente: de sección rectangular y de sección circular. También hay elípticas y flexibles.
Sus pérdidas son menores que las de líneas de tx en las frecuencias usadas (arriba de 3 GHz); y también son capaces de transportar mayores potencias que una línea coaxial de las mismas dimensiones.

Ventajas.-

Blindaje total, eliminando pérdidas por radiación.
No hay pérdidas en el dieléctrico, pues no hay aisladores dentro.
Las pérdidas por conductor son menores, pues solo se emplea un conductor.
Mayor capacidad en el manejo de potencia.
Construcción más simple que un coaxial

Desventajas.-

La instalación y la operación de un sistema de GO son más complejas. Por ejemplo:
Los radios de curvatura deben ser mayores a una l para evitar atenuación.
Considerando la dilatación y contracción con la temperatura, se debe sujetar mediante soportes especiales.
Se debe mantener sujeta a presurización para mantener las condiciones de uniformidad del medio interior.
El tamaño mínimo de la guía para transmitir una cierta frecuencia es proporcional a la l de esa frecuencia.
Dicha proporcionalidad depende tanto de la forma de la guía como de la distribución de los campos (modos de transmisión) dentro de ella. En cualquier caso, hay una frecuencia mínima que puede ser transmitida, denominada frecuencia de corte del modo principal.



Modos de Operación.-

Una GO puede propagar, en teoría, un número infinito de tipos distintos de onda electromagnética. Cada uno de estos tipos o modos presenta una configuración distinta de campos eléctrico y magnético, y la denominación de cada modo obedece a esa configuración.
Cada modo tiene una frecuencia crítica, debajo de la cual no se propagará.
Para un tamaño particular de GO, el modo correspondiente a la menor frecuencia de corte se denomina modo principal. Este será el único modo propagado si la frecuencia es mayor a la 1ª frecuencia de corte, pero menor a la frecuencia de corte del segundo modo.
La longitud de onda de corte del modo principal para una GO con aire en su interior es igual a dos veces la dimensión mayor (rectangular), o de 1.71 veces el diámetro (circular).
En general son posibles dos modos, que se denominan en consideración al campo que sea siempre transversal a la dirección de propagación: Transversal Eléctrico (TE) y Transversal Magnético (TM).
La longitud de onda de operación (lg) para cualquier modo está dada por:











donde:

l = longitud de onda en el espacio libre.
lc = longitud de onda para un modo particular de operación.
er = Constante dieléctrica relativa. (Aire = 1)
La ecuación anterior se puede también expresar como:

Guías Rectangulares.-

El modo principal para éstas es el TE10, en el cual el campo eléctrico varía senoidalmente visto desde A, y es uniforme respecto a B, como se observa en la figura siguiente (línea contínua). El campo magnético presenta líneas siempre perpendiculares a las líneas de campo E, formando lazos (línea punteada). Su frecuencia de corte se presenta cuando lc = 2A.
 
Designación de los modos.-

Esta se hace mediante los subíndices m y n, los cuales son números enteros. El primero se refiere al número de medios ciclos de variación de campo a lo largo de la dimensión A, y el segundo se refiere al número de medios ciclos de variación de campo a lo largo de B.
En general, para las guías rectangulares la longitud de onda de corte está dada por:
 

(Se debe multiplicar por la raíz de la constante dieléctrica relativa en caso diferente de aire en el interior)
De la ecuación anterior, expresando la frecuencia de corte:
 


(Dividir entre la raíz de la constante dieléctrica relativa del medio, si es diferente de aire en el interior).
El factor de fase b, se establece de la siguiente manera:
 
donde f es la frecuencia transmitida en la línea. Al igual que en el caso de líneas de transmisión, la velocidad de fase es igual a vp = w / b .

 


Guías Circulares.-

En la designación de los modos, m indica el número de ciclos completos de variación de campo alrededor de la circunferencia; n indica el número de medios ciclos de variación que existen a lo largo del diámetro.
Su modo principal es el TE11, y lc = 1.71 d, donde d es el diámetro interior. El siguiente modo es TM01, (lc =1.31 d) y el tercer modo de una GO circular es el TE21.( lc=1.03 d).
Éstos se muestran:




domingo, 15 de abril de 2012



Cable Coaxial


Un cable coaxial está compuesto por dos conductores cilíndricos, generalmente de cobre, dispuestos de forma concéntrica.


El núcleo central (alma) es sólido y está separado del conductor externo (trenza metálica o malla) por un aislante.Todo el conjunto está cubierto a su vez por una gruesa capa protectora e incluso, a veces, por otro conductor que actúa de pantalla de protección frente a interferencias.
Con esta estructura, el cable coaxial resulta ser un excelente transmisor de señales de alta frecuencia, con mínimas pérdidas por radiación y muy poco sensible a las interferencias externas.

Fundamentalmente, existen dos categorías de cables coaxiales :


  • Para transmisión en banda ancha.
Con una impedancia característica de 75 ohmios.Utilizado en transmisión de señales de televisión por cable (CATV, "Cable Televisión").


  • Para transmisión en banda base.
Con una impedancia característica de 50 ohmios. Utilizado en LAN´s. Dentro de esta categoría, se emplean dos tipos de cable: coaxial grueso ("thick") y coaxial fino ("thin").

  • Coaxial grueso ( "thick" ):
Es el cable más utilizado en LAN´s en un principio y que aún hoy sigue usándose en determinadas circunstancias (alto grado de interferencias, distancias largas, etc.).
Los diámetros de su alma/malla son 2,6/9,5 mm. Y el del total del cable de 0,4 pulgadas (aprox. 1 cm.). Como conector se emplea un transceptor ("transceiver") relativamente complejo, ya que su inserción en el cable implica una perforación hasta su núcleo (derivación del cable coaxial mediante un elemento tipo "vampiro" o "grifo").

  • Coaxial fino ( "thin" ):
Surgió como alternativa al cable anterior, al ser más barato,flexible y fácil de instalar.


Los diámetros de su alma/malla son 1,2/4,4 mm, y el del cable sólo de 0,25 pulgadas (algo más de 0,5 cm.). Sin embargo, sus propiedades de transmisión (perdidas en empalmes y conexiones, distancia máxima de enlace, protección gerente a interferencias, etc.) son sensiblemente peores que las del coaxial grueso.


Con este coaxial fino se utilizan conectores BNC ("British National Connector") sencillos y de alta calidad Ofrecen más seguridad que los de tipo "grifo", pero requieren un conocimiento previo de los puntos de conexión.

Hasta hace poco, era el medio de transmisión más común en las redes locales. El cable coaxial consiste en dos conductores concéntricos, separados por un dieléctrico y protegido del exterior por un aislante (similar al de las antenas de TV).

Existen distintos tipos de cable coaxial, según las redes o las necesidades de mayor protección o distancia. Este tipo de cable sólo lo utilizan las redes EtherNet.



Existen dos tipos de cable coaxial:


  • cable Thick o cable grueso: es más voluminoso, caro y difícil de instalar, pero permite conectar un mayor número de nodos y alcanzar mayores distancias.


  • cable Thin o cable fino, también conocido como cheapernet por ser más económico y fácil de instalar. Sólo se utiliza para redes con un número reducido de nodos.

Ambos tipos de cable pueden ser usados simultáneamente en una red. La velocidad de transmisión de la señal por ambos es de 10 Mb.

Ventajas del cable coaxial:


  • La protección de las señales contra interferencias eléctricas debida a otros equipos, fotocopiadoras, motores, luces fluorescentes, etc.


  • Puede cubrir distancias relativamente grandes, entre 185 y 1500 metros dependiendo del tipo de cable usado



















Nikola Tesla (Smiljan, 10 de julio de 1856 – Nueva York, 7 de enero de 1943) fue un físico, matemático, ingeniero eléctrico y célebre inventor que revolucionó la teoría eléctrica desarrollando las bases para la generación de corriente alterna. Falleció en Nueva York, Estados Unidos, el 7 de enero de 1943. La unidad de inducción del campo magnético del Sistema Internacional de Unidades lleva el nombre de tesla (T) en su honor. Después de su muerte, y tras un largo litigio, la Corte Suprema de los Estados Unidos reconoció como suya la patente de la radio, que se había atribuido erróneamente a Guglielmo Marconi. 

Tesla nació en el pueblo de Smiljan en la Frontera Militar (Vojna Krajina) austrohúngara, se educó en Graz y posteriormente en Praga, donde estudió ingeniería eléctrica. En 1881 viajó a Budapest para trabajar en una compañía de telégrafos estadounidense. Al año siguiente se trasladó a París para trabajar en una de las compañías de Thomas Alva Edison, donde realizó su mayor aporte: la teoría de la corriente alterna, lo cual le permitió idear el primer motor eléctrico de inducción en 1882.

En 1884 se trasladó a Nueva York, creando su propia compañía en 1886 tras romper con Edison después de tener muchas diferencias ante la eficiencia entre la corriente continua (CC) y la corriente alterna (CA) de Tesla. Tenía un laboratorio en la calle Houston en Nueva York. En 1887 logra construir el motor de inducción de corriente alterna. Posteriormente sin medios económicos para realizar todas sus investigaciones e inventos, conoció a Westinghouse, un científico y empresario adinerado que logró, mediante un acuerdo económico, comprarle las patentes de sus inventos y lo contrató para trabajar con él en sus laboratorios Westinghouse Electric, donde concibió el sistema polifásico para trasladar la electricidad a largas distancias. Empeñado Tesla en mostrar la superioridad de la CA sobre la CC de Edison se desarrolló lo que se conoce como “guerra de las corrientes”. En 1893 se hizo en Chicago una exhibición pública de la corriente alterna, demostrando su superioridad sobre la corriente continua de Edison.

Ese mismo año Tesla logró transmitir energía electromagnética sin cables, construyendo el primer radiotransmisor. Presentó la patente correspondiente en 1897, dos años después de que Guglielmo Marconi lograra su primera transmisión de radio. Marconi registró su patente el 10 de noviembre de 1900 y fue rechazada por ser considerada una copia de la patente de Tesla. Se inició un litigio entre la compañía de Marconi y Tesla. Tras recibir el testimonio de numerosos científicos destacados, la Corte Suprema de los Estados Unidos de América falló en 1943 a favor de Tesla (la mayoría de los libros mencionan a Marconi como el inventor de la radio).

A finales del siglo XIX, Tesla demostró que usando una red eléctrica resonante y usando lo que en aquél tiempo se conocía como “corriente alterna de alta frecuencia” (hoy se considera de baja frecuencia) sólo se necesitaba un conductor para alimentar un sistema eléctrico, sin necesidad de otro metal ni un conductor de tierra. Tesla llamó a este fenómeno la “transmisión de energía eléctrica a través de un único cable sin retorno”. Ideó y diseñó los circuitos eléctricos resonantes formados por una bobina y un condensador, claves de la emisión y recepción de ondas radioeléctricas con selectividad y potencia gracias al fenómeno de la resonancia. Lo que de hecho creaba y transmitía eran ondas electromagnéticas a partir de alternadores de alta frecuencia sólo que no lo aplicó a la trasmisión de señales de radio como hizo Marconi sino a un intento de trasmitir energía eléctrica a distancia sin usar cables. Tesla afirmó en 1901: “Hace unos diez años, reconocí el hecho de que para transportar corrientes eléctricas a largas distancias no era en absoluto necesario emplear un cable de retorno, sino que cualquier cantidad de energía podría ser transmitida usando un único cable. Ilustré este principio mediante numerosos experimentos que, en su momento, generaron una atención considerable entre los hombres de ciencia.”

No obstante, Edison aún trataba de disuadir la teoría de Tesla mediante una campaña para fomentar ante el público el peligro que corrían al utilizar este tipo de corriente, por lo que Harold P. Brown, un empleado de Thomas Edison contratado para investigar la electrocución, desarrolló la silla eléctrica.

En la primavera de 1891, Tesla realizó demostraciones con varias máquinas ante el Instituto Americano de Ingenieros Eléctricos en la Universidad de Columbia. Demostró de esta forma que todo tipo de aparatos podían ser alimentados a través de un único cable sin un conductor de retorno. Este sistema de transmisión unifilar fue protegido en 1897 por la patente U.S.0,593,138.

En las cataratas del Niágara se construyó la primera central hidroeléctrica gracias a los desarrollos de Tesla en 1893, consiguiendo en 1896 transmitir electricidad a la ciudad de Búfalo (Nueva York). Con el apoyo financiero de George Westinghouse, la corriente alterna sustituyó a la continua. Tesla fue considerado desde entonces el fundador de la industria eléctrica.

En 1891 inventó la bobina de Tesla.

En su honor se llamó ‘Tesla’ a la unidad de medida del campo magnético en el Sistema Internacional de Unidades.

Incautación de sus documentos
Cuando murió, el Gobierno de los Estados Unidos intervino todos los documentos de su despacho, en los que constaban sus estudios e investigaciones. Aún no se han desclasificado dichos documentos.

Tesla era una gran mente para la ciencia. Algunos de sus estudios nadie podía descifrarlos debido a su enorme capacidad inductiva. Para la mayoría de sus proyectos ideaba los documentos de cabeza, le bastaba con tener la imagen de dicho objeto sin saber cómo funcionaba, simplemente lo elaboraba sin saber que podía suponer un gran avance para la humanidad. Fue un lector minucioso de la teoría física de Rogelio José Boscovich.

Nikola Tesla ideó un sistema de transmisión de electricidad inalámbrico, de tal suerte que la energía podría ser llevada de un lugar a otro mediante ondas de naturaleza no hertzianas. Dicho sistema se basaba en la capacidad de la ionosfera para conducir electricidad, la potencia se transmitía a una frecuencia de 6 Hz con una enorme torre llamada Wardenclyffe Tower, para valerse de la resonancia Schumann como medio de transporte. Hoy día se sabe que esta frecuencia es de 7,83 Hz y no de 6 , lo que explica la gran necesidad de Nikola Tesla de usar enormes potencias para sus experimentos. En los últimos años muchos son los que han intentado seguir su legado, pero es una tarea difícil, ya que existen apenas algunos documentos y se desconoce en gran medida la forma original en la que la realizaba Tesla.

Se le ha relacionado en más de una ocasión con la explosión ocurrida en Tunguska (Siberia). Cuentan algunos de sus biógrafos que le dijo a un amigo, que hizo una expedición al Ártico, que le saludaría con un destello de luz. El mismo día en que iba a llevarse a cabo dicho aviso se produjo la misteriosa explosión en esta zona de Rusia.

Es muy conocida su enemistad con Thomas Edison. Después de trabajar varios meses mejorando los diseños de los generadores de corriente continua, y mientras le brindaba varias patentes que Edison registraba como propias, éste se negó a pagarle los 50.000 dólares que le había prometido si tenía éxito (y usando las mejoras), aduciendo que se trató de una “broma americana”, e incluso se negó a subirle el sueldo a 25 dólares a la semana. Edison propició la invención de la silla eléctrica, que emplea corriente alterna (desarrollada por Tesla) en lugar de corriente continua -de la que él era el impulsor- para así dar mala fama al invento del europeo.

Se dice que Nikola Tesla no hacía planos, sino que lo memorizaba todo. También se dice que sólo dormía tres horas al día e incluso que personas allegadas a él, lo vieron en activo hasta 150 horas seguidas. Buena parte de la etapa final de su vida la vivió absorto con el proceso judicial que entabló en lo relativo a la invención de la radio, que se disputaba con Marconi, pues Tesla había inventado un dispositivo similar al menos 15 años antes que él. En la década de los sesenta el Tribunal Supremo de los Estados Unidos dictaminó que la patente relativa a la radio era legítimamente propiedad de Tesla, reconociéndolo de forma legal como inventor de ésta, si bien esto no trascendió a la opinión pública, que sigue considerando a Marconi como su inventor.

Según ciertos rumores, a medida que envejecía se hacía más y más excéntrico; al final de su vida moraba habitualmente en hoteles, de los cuales se marchaba (en busca de otro nuevo) cuando no podía pagar la abultada cuenta. Periódicamente convocaba a la prensa para presentar algunos de sus inventos, a cuál más excéntricos. Por ejemplo, propuso iluminar parte del desierto del Sahara para que los marcianos comprobasen que la Tierra estaba habitada y contenía seres inteligentes. En sus últimos años vivió solo, huraño y desconfiado.

Muchas historias cuentan que Tesla fue un excéntrico sin precedentes y se ha llegado incluso a decir que venía del planeta Venus. Lo cierto en esta historia, es que Tesla, como ya se ha comentado anteriormente, poseía una serie de habilidades psicológicas entre las que cabe destacar un gran ingenio, y una capacidad de invención sin precedentes, cualidades que le sirvieron para desarrollar muchos de sus inventos con tan solo visualizarlos mentalmente. Algunos comentarios, como el que afirma que venía de Venus, se usaron habitualmente para desprestigiar el trabajo de este gran científico y desprestigiarlo a él mismo. Otras versiones, aluden a que esa clase de comentarios fueron hechos para tratarlo de loco, puesto que a día de hoy, prácticamente nadie ha conseguido realizar ningún invento de Tesla, que recordemos, los hizo hace más de 100 años en muchos casos. Por otra parte, la idea de tacharlo de una persona con alteraciones mentales, ha sido usada para ocultar muchos de sus inventos y aportaciones a la ciencia, dado que podrían afectar a intereses varios y a la propia seguridad nacional.





















Osornio Rmz

Materia: Ondas Electromagnéticas Guiada

bloger´s

Con la tecnología de Blogger.